CS 301: Combinatorial Optimization

Strongly Connected Component

Last Class's Topic

- DFS
- Topological Sort
- Problems:
 - Detect cycle in an undirected graph
 - Detect cycle in a directed graph
 - How many paths are there from "s" to "t" in a directed acyclic graph?

Connectivity

- Connected Graph
 - In an <u>undirected graph</u> G, two vertices u and v are called connected if G contains a path from u to v. Otherwise, they are called disconnected.
 - A <u>directed graph</u> is called connected if every pair of distinct vertices in the graph is connected.
- Connected Components
 - A connected component is a maximal connected subgraph of G. Each vertex belongs to exactly one connected component, as does each edge.

Connectivity (cont.)

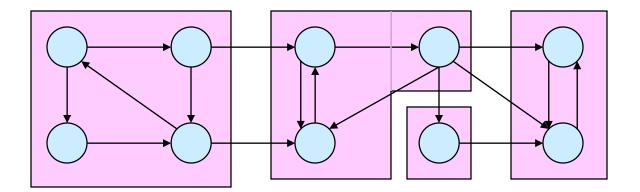
- Weakly Connected Graph
 - A directed graph is called weakly connected if replacing all of its directed edges with undirected edges produces a connected (undirected) graph.
- Strongly Connected Graph
 - It is strongly connected or strong if it contains a directed path from u to v for every pair of vertices u, v. The strong components are the maximal strongly connected subgraphs

Connected Components

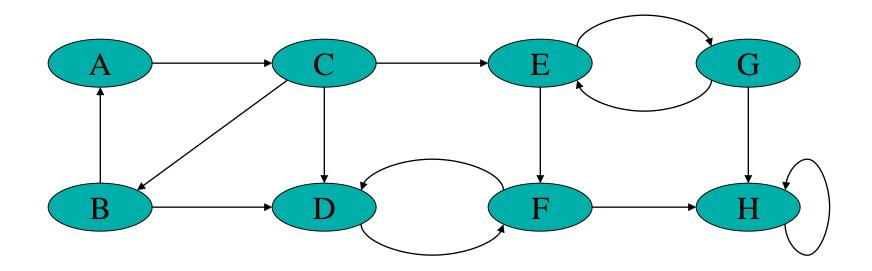
- Strongly connected graph
 - A directed graph is called *strongly connected* if for every pair of vertices *u* and *v* there is a path from *u* to *v* and a path from *v* to *u*.
- Strongly Connected Components (SCC)
 - The strongly connected components (SCC) of a directed graph are its maximal strongly connected subgraphs.
- Here, we work with
 - Directed unweighted graph

Strongly Connected Components

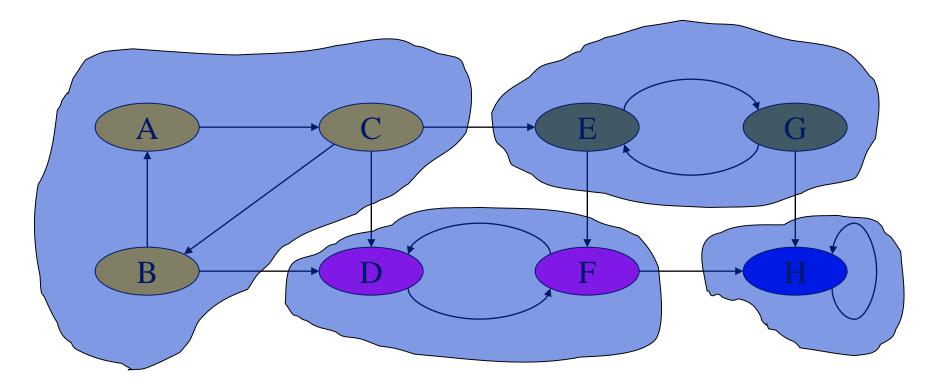
- *G* is strongly connected if every pair (*u*, *v*) of vertices in *G* is reachable from one another.
- A strongly connected component (*SCC*) of *G* is a maximal set of vertices $C \subseteq V$ such that for all $u, V \in C$, both $u \sim V$ and $V \sim u$ exist.



DFS - Strongly Connected Components

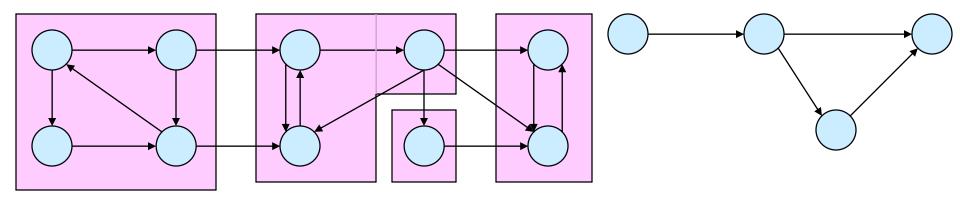


DFS - Strongly Connected Components



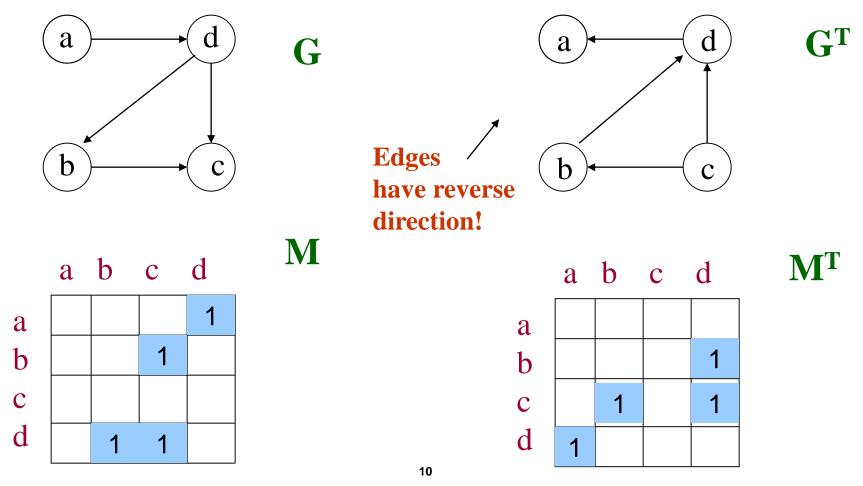
Component Graph

- $G^{\text{SCC}} = (V^{\text{SCC}}, E^{\text{SCC}}).$
- V^{SCC} has one vertex for each SCC in G.
- *E*^{SCC} has an edge if there's an edge between the corresponding SCC's in *G*.
- *G*^{SCC} for the example considered:



Strongly Connected Components

The **transpose** M^T of an NxN matrix M is the matrix obtained when the rows become columns and the column become rows:



Transpose of a Directed Graph

- $G^{\mathrm{T}} =$ **transpose** of directed *G*.
 - $G^{\mathrm{T}} = (V, E^{\mathrm{T}}), E^{\mathrm{T}} = \{(u, v) : (v, u) \in E\}.$

• G^{T} is G with all edges reversed.

- Can create G^{T} in $\Theta(V + E)$ time if using adjacency lists.
- *G* and *G*^T have the *same* SCC's. (*u* and *v* are reachable from each other in *G* if and only if reachable from each other in *G*^T.)

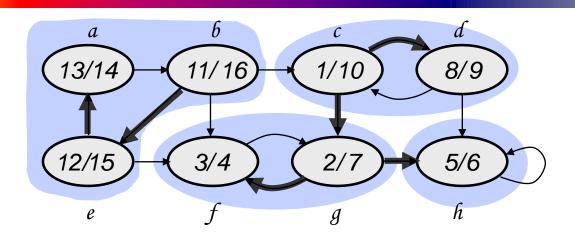
Algorithm to determine SCCs

<u>SCC(G)</u>

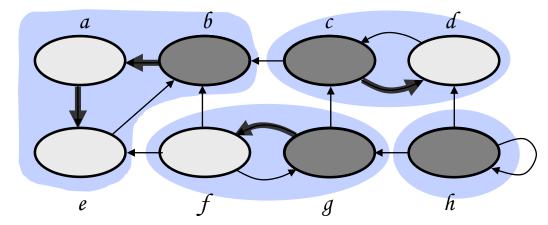
- 1. call DFS(G) to compute finishing times f[u] for all u
- 2. compute G^{T}
- 3. call DFS(G^{T}), but in the main loop, consider vertices in order of decreasing f[u] (as computed in first DFS)
- 4. output the vertices in each tree of the depth-first forest formed in second DFS as a separate SCC

Time: $\Theta(V + E)$.

Example



DFS on the initial graph G

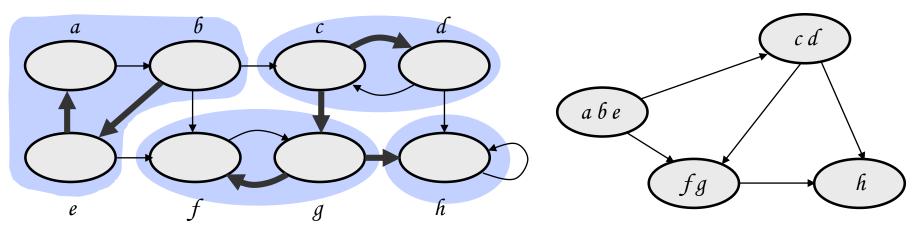


DFS on $G^{T:}$

- start at b: visit a, e
- start at c: visit d
- start at g: visit f
- start at h

Strongly connected components: $C_1 = \{a, b, e\}, C_2 = \{c, d\}, C_3 = \{f, g\}, C_4 = \{h\}$

Component Graph



• The component graph $G^{SCC} = (V^{SCC}, E^{SCC})$:

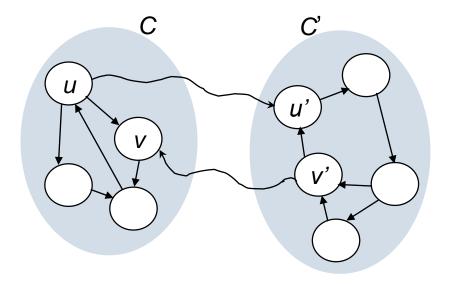
- $V^{SCC} = \{v_1, v_2, ..., v_k\}$, where v_i corresponds to each strongly connected component C_i
- There is an edge $(v_i, v_j) \in E^{SCC}$ if G contains a directed edge (x, y) for some $x \in C_i$ and $y \in C_j$
- The component graph is a DAG

Lemma 1

- Let C and C' be distinct SCCs in G
- Let $\mathbf{u}, \mathbf{v} \in \mathbf{C}$, and $\mathbf{u}', \mathbf{v}' \in \mathbf{C}'$
- Suppose there is a path $\mathbf{u} \Rightarrow \mathbf{u}'$ in G
- Then there cannot also be a path $v' \Rightarrow v$ in G.

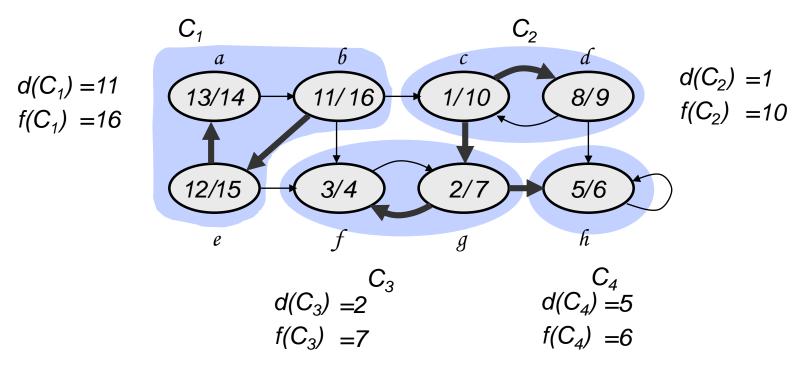
Proof

- Suppose there is a path v' ⇒ v
- There exists u ⇒ u' ⇒ v'
- There exists v' ⇒ v ⇒ u
- u and v' are reachable from each other, so they are not in separate SCC's: contradiction!



Notations

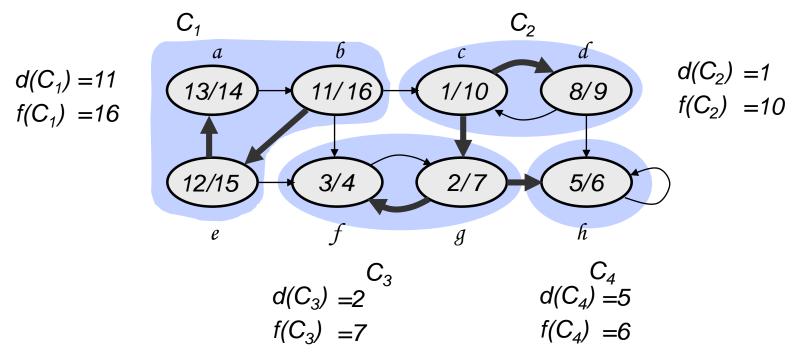
- Extend notation for d (starting time) and f (finishing time) to sets of vertices U ⊆ V:
 - $d(U) = \min_{u \in U} \{ d[u] \}$ (earliest discovery time)
 - $f(U) = \max_{u \in U} \{ f[u] \}$ (latest finishing time)



Lemma 2

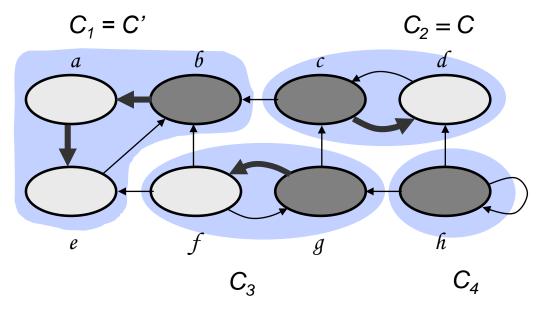
Let C and C' be distinct SCCs in a directed graph G = (V, E). If there is an edge (u, v) ∈ E, where u ∈ C and v ∈ C' then f(C) > f(C').

• Consider C₁ and C₂, connected by edge (b, c)



Corollary

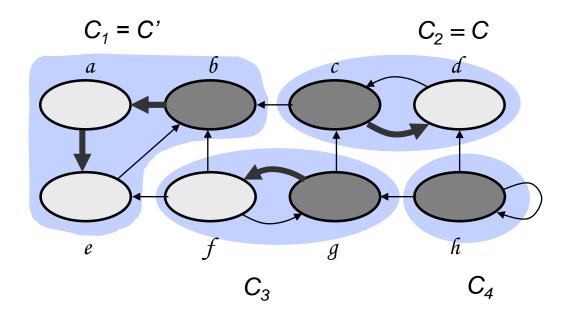
- Let C and C' be distinct SCCs in a directed graph G = (V, E). If there is an edge (u, v) ∈ E^T, where u ∈ C and v ∈ C' then f(C) < f(C').
- Consider C₂ and C₁, connected by edge (c, b)



- Since $(c, b) \in E^T \Rightarrow$ $(b, c) \in E$
- From previous lemma:
 f(C₁) > f(C₂)
 f(C') > f(C)
 f(C) < f(C')

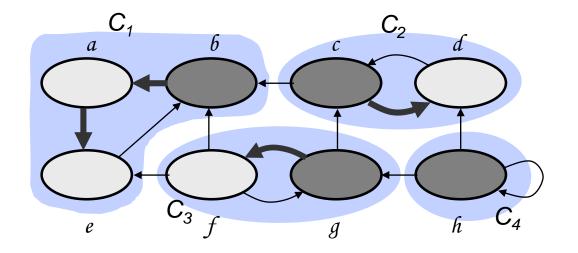
Corollary

• Each edge in G^T that goes between different components goes from a component with an earlier finish time (in the DFS) to one with a later finish time



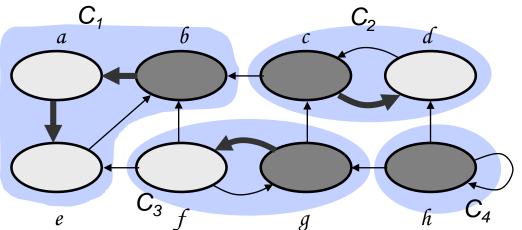
Why does SCC Work?

- When we do the second DFS, on G^T, we start with a component C such that f(C) is maximum (b, in our case)
- We start from **b** and visit all vertices in C₁
- From corollary: f(C) > f(C') in G for all C ≠ C' ⇒ there are no edges from C to any other SCCs in G^T
- \Rightarrow DFS will visit only vertices in C₁
- \Rightarrow The depth-first tree rooted at **b** contains exactly the vertices of C₁



Why does SCC Work? (cont.)

- The next root chosen in the second DFS is in SCC C₂ such that f(C) is maximum over all SCC's other than C₁
- DFS visits all vertices in C₂
 - the only edges out of C_2 go to C_1 , which we've already visited
- \Rightarrow The only tree edges will be to vertices in C₂
- Each time we choose a new root it can reach only:
 - vertices in its own component
 - vertices in components *already visited*



Reference

- Book: Cormen Chapter 22 Section 22.5
- Exercise:
 - 22.5-1: Number of componets change?
 - 22.5-6: Minimize edge list
 - 22.5-7: Semiconnected graph