CS 301: Combinatorial
Optimization

Strongly Connected Component

Last Class’s Topic

o DFS
e Topological Sort
e Problems:

Detect cycle in a directed graph

How many paths are there from

directed acyclic graph?

Detect cycle in an undirected graph

¢¢ 9%

S

to “t” 1n a

Connectivity

e Connected Graph

= In an undirected graph G, two vertices u and v are called
connected If G contains a path from u to v. Otherwise, they
are called disconnected.

m A directed graph is called connected if every pair of
distinct vertices in the graph is connected.
e Connected Components

= A connected component is a maximal connected subgraph
of G. Each vertex belongs to exactly one connected
component, as does each edge.

Connectivity (cont.)

e Weakly Connected Graph

= A directed graph iIs called weakly connected if
replacing all of its directed edges with undirected
edges produces a connected (undirected) graph.

e Strongly Connected Graph

m It Is strongly connected or strong If it contains a
directed path from u to v for every pair of vertices
u, v. The strong components are the maximal
strongly connected subgraphs

Connected Components

e Strongly connected graph

m A directed graph is called strongly connected if for every
pair of vertices u and v there is a path from u to vand a
path from v to u.

e Strongly Connected Components (SCC)

= The strongly connected components (SCC) of a directed
graph are its maximal strongly connected subgraphs.

e Here, we work with
= Directed unweighted graph

Strongly Connected Components

e G Is strongly connected If every pair (u, v) of
vertices In G Is reachable from one another.

e A strongly connected component (SCC) of G
IS @ maximal set of vertices C — V such that
forallu, v e C, bothu ~~v and v ~~u exist.

o)

o)

TN

RN

P

P
B
P

@

»
P
B
P

DFS - Strongly Connected
Components

DFS - Strongly Connected
Components

Component Graph

o GSCC = (\/SCC, ESCC),

e V°CC has one vertex for each SCC in G.

o E>C has an edge if there’s an edge between
the corresponding SCC’s in G.

o G>CC for the example considered:

o)

o)

i

P

@

»
P
»
P

O fv

Strongly Connected Components

The transpose MT of an NxN matrix M is the matrix obtained
when the rows become columns and the column become rows:

o O T 2

ab c¢c d
1
1
1 1

@: d GT

v/ o

have reverse Q

direction!

o O T 2D
=

10

Transpose of a Directed Graph

e G = transpose of directed G.
nG'=(V,E",ET={(u,V):(v,u) € E}.
m GT is G with all edges reversed.

e Can create G' in ®(V + E) time if using
adjacency lists.

e G and G' have the same SCC’s. (u and v are

reachable from each other in G if and only If
reachable from each other in G'.)

Algorithm to determine SCCs

SCC(G)
1. call DFS(G) to compute finishing times f [u] for all u

2. compute GT

3. call DFS(GT), but in the main loop, consider vertices in order of
decreasing f [u] (as computed in first DFS)

4. output the vertices in each tree of the depth-first forest formed in second
DFS as a separate SCC

Time: O(V + E).

12

Example

DFS on the initial graph G

DFS on GT™

e Start at b: visita, e
e start at c: visit d

e start at g: visit f

e start at h

e f g h

Strongly connected components: C; ={a, b, e}, C, ={c, d}, C; = {f, g}, C, = {h}

Component Graph

e I g h m

e The component graph GS¢¢ = (\V/SCC ESCC):

m V€ ={vy, v,, ..., v}, Where v; corresponds to each
strongly connected component C,

= There is an edge (v;, v;) € E>“if G contains a directed
edge (x,y) forsome x € Cjandy € C;

e The component graph is a DAG

Lemma 1

Let C and C’ be distinct SCCs in G
Letu,ve C,andu’, v e C’
Suppose thereisapathu = u' in G

Then there cannot also be a path v' = v in G.

Proof

e Suppose thereisapath v' 22 v
« Thereexistsu zu =V

« Thereexistsv' 22 v 23 u

u and v’ are reachable from each
other, so they are not in separate
SCC’s: contradiction!

Notations

o Extend notation for d (starting time) and f (finishing
time) to sets of vertices U c V-
m d(U)=min,_, {d[u] } (earliest discovery time)
m f(U) = max,_, { f[u] } (latest finishing time)
C, C,

a b c d
d(C, =11

d(C,) =
f(C,) =16 @w @ g f(c(::;) =1o
DI C

e f g h

d(C3) =2 d(C4) =5

f(Cs) =7 f(C,) =6

Lemma 2

e Let C and C’ be distinct SCCs 1n a directed graph G =
(V, E). If there isan edge (u, v) € E, whereu € C
and v € C’ then f(C) > f(C).

e Consider C, and C,, connected by edge (b, ¢)

d(C,) =11
f(C,) =16

Cy

a

T

b

C,
c d

d(C,) =1
@ 8/9 f(C,) =10
N C

Corollary

e Let C and C’ be distinct SCCs 1n a directed graph G =
(V, E). If there isan edge (u, v) € ET, whereu € C
and v € C’ then f(C) < {(C’).

e Consider C, and C,, connected by edge (c, b)

C,=C C,=C « Since (¢, b) eE™ =
a b c d (b/ C) cE

e From previous
lemma:

f(Cy) > 1(Cy)
(C) >1C)
(C) <1C)

Corollary

e Each edge in GT that goes between different
components goes from a component with an earlier
finish time (in the DFS) to one with a later finish time

Why does SCC Work?

e When we do the second DFS, on GT, we start with a component C such that
f(C) i1s maximum (b, in our case)

e We start from b and visit all vertices in C,

e From corollary: f(C) > f(C’) in G for all C # C* = there are no edges from
C to any other SCCs in GT

= DFS will visit only vertices in C;
— The depth-first tree rooted at b contains exactly the vertices of C,

e a c d ghtf
151410 9 7 6 4

C C
a ! b c 2 d

Why does SCC Work? (cont.)

e The next root chosen in the second DFS is in SCC C, such that f(C) is
maximum over all SCC’s other than C;

e DFS visits all vertices in C,
= the only edges out of C, go to C,, which we’ve already visited
= The only tree edges will be to vertices in C,

e Each time we choose a new root it can reach only:
m Vvertices in its own component
m Vertices in components already visited

b e a d g hf
16 15 14 9 7 6 4

C C
a ! b c 2 d

Reference

e Book: Cormen — Chapter 22 — Section 22.5

e EXercise:
m 22.5-1: Number of componets change?
m 22.5-6: Minimize edge list
m 22.5-7: Semiconnected graph

