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CS 301: Combinatorial 

Optimization

Strongly Connected Component



Last Class’s Topic

● DFS

● Topological Sort

● Problems:

■ Detect cycle in an undirected graph

■ Detect cycle in a directed graph

■ How many paths are there from “s” to “t” in a 

directed acyclic graph?
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Connectivity

● Connected Graph

■ In an undirected graph G, two vertices u and v are called 

connected if G contains a path from u to v. Otherwise, they 

are called disconnected.

■ A directed graph is called connected if every pair of 

distinct vertices in the graph is connected.

● Connected Components

■ A connected component is a maximal connected subgraph

of G. Each vertex belongs to exactly one connected 

component, as does each edge.



Connectivity (cont.)

● Weakly Connected Graph

■ A directed graph is called weakly connected if 

replacing all of its directed edges with undirected 

edges produces a connected (undirected) graph.

● Strongly Connected Graph

■ It is strongly connected or strong if it contains a 

directed path from u to v for every pair of vertices 

u, v. The strong components are the maximal 

strongly connected subgraphs



Connected Components

● Strongly connected graph

■ A directed graph is called strongly connected if for every 

pair of vertices u and v there is a path from u to v and a 

path from v to u. 

● Strongly Connected Components (SCC)

■ The strongly connected components (SCC) of a directed 

graph are its maximal strongly connected subgraphs. 

● Here, we work with

■ Directed unweighted graph
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Strongly Connected Components

● G is strongly connected if every pair (u, v) of 

vertices in G is reachable from one another.

● A strongly connected component (SCC) of G 

is a maximal set of vertices C  V such that 

for all u, v  C, both u   v and v     u exist.



7

DFS - Strongly Connected 

Components
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DFS - Strongly Connected 

Components
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Component Graph

● GSCC = (VSCC, ESCC).

● VSCC has one vertex for each SCC in G.

● ESCC has an edge if there’s an edge between 

the corresponding SCC’s in G.

● GSCC for the example considered:
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Strongly Connected Components

The transpose MT of an NxN matrix  M is the matrix obtained 

when the rows become columns and the column become rows:
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Transpose of a Directed Graph

● GT = transpose of directed G.

■ GT = (V, ET), ET = {(u, v) : (v, u)  E}.

■ GT is G with all edges reversed.

● Can create GT in Θ(V + E) time if using 

adjacency lists.

● G and GT have the same SCC’s. (u and v are 

reachable from each other in G if and only if 

reachable from each other in GT.)
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Algorithm to determine SCCs

SCC(G)

1. call DFS(G) to compute finishing times f [u] for all u

2. compute GT

3. call DFS(GT), but in the main loop, consider vertices in order of 

decreasing f [u] (as computed in first DFS)

4. output the vertices in each tree of the depth-first forest formed in second 

DFS as a separate SCC

Time: (V + E).
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DFS on the initial graph G

DFS on GT:

• start at b: visit a, e

• start at c: visit d

• start at g: visit f

• start at h

Strongly connected components: C1 = {a, b, e}, C2 = {c, d}, C3 = {f, g}, C4 = {h}
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Component Graph

● The component graph GSCC = (VSCC, ESCC):

■ VSCC = {v1, v2, …, vk}, where vi corresponds to each 

strongly connected component Ci

■ There is an edge (vi, vj)  ESCC if G contains a directed 

edge (x, y) for some x  Ci and y  Cj

● The component graph is a DAG
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Lemma 1

Let C and C’ be distinct SCCs in G

Let u, v  C, and u’, v’  C ’

Suppose there is a path u  u’ in G

Then there cannot also be a path v’  v in G.

u

v

u’

v’

Proof 

• Suppose there is a path v’  v

• There exists u  u’  v’

• There exists v’  v  u

• u and v’ are reachable from each 

other, so they are not in separate 

SCC’s: contradiction!

C C’



Notations

● Extend notation for d (starting time) and f (finishing 

time) to sets of vertices U  V:

■ d(U) = minuU { d[u] } (earliest discovery time)

■ f(U) = maxuU { f[u] } (latest finishing time)
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Lemma 2

● Let C and C’ be distinct SCCs in a directed graph G = 

(V, E). If there is an edge (u, v)  E, where u  C 

and v  C’ then f(C) > f(C’).

● Consider C1 and C2, connected by edge (b, c)
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Corollary

● Let C and C’ be distinct SCCs in a directed graph G = 

(V, E). If there is an edge (u, v)  ET, where u  C 

and v  C’ then f(C) < f(C’).

● Consider C2 and C1, connected by edge (c, b)
C1 = C’ C2 = C

C3 C4

a b c d

e f g h

• Since (c, b)  ET 

(b, c)  E

• From previous 

lemma:

f(C1) > f(C2)

f(C’) > f(C)

f(C) < f(C’)



Corollary

● Each edge in GT that goes between different 
components goes from a component with an earlier 
finish time (in the DFS) to one with a later finish time

C1 = C’ C2 = C

C3 C4
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Why does SCC Work?

● When we do the second DFS, on GT, we start with a component C such that 

f(C) is maximum (b, in our case)

● We start from b and visit all vertices in C1

● From corollary: f(C) > f(C’) in G for all C  C’  there are no edges from 

C to any other SCCs in GT

 DFS will visit only vertices in C1

 The depth-first tree rooted at b contains exactly the vertices of C1
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Why does SCC Work? (cont.)

● The next root chosen in the second DFS is in SCC C2 such that f(C) is 

maximum over all SCC’s other than C1

● DFS visits all vertices in C2

■ the only edges out of C2 go to C1, which we’ve already visited

 The only tree edges will be to vertices in C2

● Each time we choose a new root it can reach only:

■ vertices in its own component 

■ vertices in components already visited

C1 C2

C3 C4

a b c d

e f g h

f

4

h

6

g

7

d

9

c

10

a

14

e

15

b

16



Reference

● Book: Cormen – Chapter 22 – Section 22.5

● Exercise:

■ 22.5-1: Number of componets change?

■ 22.5-6: Minimize edge list

■ 22.5-7: Semiconnected graph


